Physics of laser and laser applications

Admin | Second year, Semester4

Einstein Coefficients

Einstein Coefficients:

Consider an enclosure containing atoms capable of being raised by absorption of radiation from level 'm' to excited level 'n'. In the absence of any radiation of appropriate frequency, there is no way in which atoms can pass from state 'm' to state 'n'.

Suppose now that the enclosure contains the isotropic radiation of frequency between ωmn\omega_{mn} and ωmn+dωmn\omega_{mn}+d\omega_{mn} corresponding to the transition of atoms from state 'm' to state 'n' (ωmn=EnEm)(\hbar \omega_{mn}=E_n-E_m)where EnE_nis energy of state 'n' and EmE_m is energy of state 'm'. Radiation as it is streaming out of the walls of the enclosure and back into them may interact with atoms and a transition from state 'm' to state 'n' may occur by absorption of a photon having energy (ωnm)(\hbar \omega_{nm})The rate of transition from state 'm' to 'n', RmnR_{mn}will be proportional to population of lower level per unit volume (Nm)(N_{m})to probability of absorption per unit time (Bmn)(B_{mn})and to the density of radiation ρ(ωnm)\rho(\omega_{nm})That is,

Rmn=ρ(ωnm)BmnNm........................(1)R_{mn}=\rho(\omega_{nm})B_{mn} N_m........................(1)

Rmn=ρ(ωnm)BmnNmR_{mn}=\rho(\omega_{nm})B_{mn}N_m

The atoms which absorb radiation become excited and eventually return to ground state emitting spontaneously their excess energy. The process is independent of radiation field energy. There is a finite probability (Anm)(A_{nm})per unit time that the atom will spontaneously fall to the ground state emitting a photon (ωnm)(\hbar \omega_{nm})The number of atoms spontaneously emitting radiation per unit time is 

Rnm(sp)=AnmNn........................(2)R_{nm(sp)}=A_{nm} N_n........................(2)
where NnN_n is number of atoms per unit volume in state 'n'.

When a steady state reached, there must clearly be a balance achieved between absorption and emission processes. When the light and atoms have settled down in a steady equilibrium state, the mean number of atoms Nm,NnN_m,N_n in lower ad upper states remains constant. That is, dNdt=0\dfrac{dN}{dt}=0

The number of atoms absorbing radiation per unit time= The number of atoms emitting radiation per unit time

If absorption and spontaneous emission were the only processes operative,

ρ(ωnm)BmnNm=AnmNn\rho(\omega_{nm})B_{mn}N_m=A_{nm}N_n

ρ(ωnm)=AnmBmn.NnNm..........................(3)\rho(\omega_{nm})=\dfrac{A_{nm}}{B_{mn}}.\dfrac{N_n}{N_m}..........................(3)

In thermal equilibrium, the total number of atoms 'N' will be distributed over the available levels according to Boltzmann distribution as

Ni=NgieEi/kTigieEi/kTN_i=\dfrac{Ng_ie^{-E_i/kT}}{\sum_{i}g_ie^{-E_i/kT}}

where gig_i is statistical wt. of level 'i'

TTis temperature and kkis Boltzmann constant

Therefore,

NnNm=gneEn/kTgmeEm/kT\dfrac{N_n}{N_m}=\dfrac{g_ne^{-E_n/kT}}{g_me^{-E_m/kT}}

Let's assume gn=gm=1g_n=g_m=1

The above equation becomes,

NnNm=e(EnEm)/kT\dfrac{N_n}{N_m}=e^{-(E_n-E_m)/kT}

NnNm=eωnm/kT\dfrac{N_n}{N_m}=e^{-\hbar\omega_{nm}/kT}

Put this value into the equation (3),

ρ(ωnm)=AnmBmneωnm/kT.........................(4)\rho(\omega_{nm})=\dfrac{A_{nm}}{B_{mn}}e^{-\hbar\omega_{nm}/kT}.........................(4)

Above equation for variation of radiation density ρ(ωnm)\rho(\omega_{nm})with temperature is not in accordance with experimental measurements which support Planck's law which is

ρ(ωnm)dωnm=ωnm3π2c31eωnm/kT.dωnm............................(5)\rho(\omega_{nm})d\omega_{nm}=\dfrac{\hbar\omega_{nm}^3}{\pi^2c^3}\dfrac{1}{e^{-\hbar \omega_{nm}/kT}}.d\omega_{nm}............................(5)

Einstein's treatment of this problem uses an elegant thermodynamic argument. he pointed out that the two kinds of radiations indicates above are not sufficient for explaining the existence of state of equilibrium between radiation and matter.

The probability of spontaneous transition is determined only by internal properties of atoms, whereas that of absorption transition depends both on the prop. of atoms and on the density of radiation.

Therefore, while considering the detailed balance between two energy levels 'm' and 'n', in the presence of radiation, we can not ignore the possibility of radiation influencing atoms in excited state and causing them to return to lower state, the excess energy being given out as radiation. This radiative process is called induced or stimulated emission of radiation. Therefore,

Rnm(st)=ρ(ωnm)BnmNn........................(6)R_{nm(st)}=\rho(\omega_{nm})B_{nm}N_n........................(6)

where BnmB_{nm} is the prob. per unit time that atom will undergo transition from 'n' to 'm' by stimulated emission. That is, absorption and stimulated emission are the processes induced by radiation.

The equation of rate of change of NnN_n is

dNndt=NnAnm+NmBmnρ(ωnm)NnBnmρ(ωnm)\dfrac{dN_n}{dt}=-N_nA_{nm}+N_mB_{mn}\rho(\omega_{nm})-N_nB_{nm}\rho(\omega_{nm})

Under the condition of equilibrium dNndt=0\dfrac{dN_n}{dt}=0

Therefore,

NnAnm=(NmBmnNnBnm)ρ(ωnm)N_nA_{nm}=(N_mB_{mn}-N_nB_{nm})\rho(\omega_{nm})

ρ(ωnm)=AnmNmNn(BmnBnm)...............(7)\rho(\omega_{nm})=\dfrac{A_{nm}}{\dfrac{N_m}{N_n}(B_{mn}-B_{nm})}...............(7)

The ratio of number densitites of particles in two energy states in presence of degeneracy as obtained from Boltzmann law as

NnNm=gneEn/kTgmeEm/kt=gngme(EnEm)/kT\dfrac{N_n}{N_m}=\dfrac{g_ne^{-E_n/kT}}{g_me^{-E_m/kt}}=\dfrac{g_n}{g_m}e^{-(E_n-E_m)/kT}


Put this value in equation (7)

ρ(ωnm)=Anmgmgneω/kT(BmnBnm)\rho(\omega_{nm})=\dfrac{A_{nm}}{\dfrac{g_m}{g_n}e^{-\hbar \omega/kT(B_{mn}-B_{nm})}}

ρ(ωnm)=AnmBnm1gmgnBmnBnme(ω/kT)1.........................(8)\rho(\omega_{nm})=\dfrac{A_{nm}}{B_{nm}}\dfrac{1}{\dfrac{g_m}{g_n}\dfrac{B_{mn}}{B_{nm}}e^{(\hbar \omega/kT)}-1}.........................(8)

This expression; derived using Einstein coefficient Anm,Bnm,BmnA_{nm}, B_{nm}, B_{mn} and the Boltzmann distribution law must be consisted with Planck's law.

To determine AnmBnm\dfrac{A_{nm}}{B_{nm}}, Einstein took advantage of the fact that at high frequency eq. (8) must transform into Wein's radiation law. 

When ω>>kT\hbar \omega \gt\gt kT

ρ(ωnm)=ωnm3π2c3eωnm/kT\rho(\omega_{nm})=\dfrac{\hbar \omega^3_{nm}}{\pi^2c^3}e^{-\hbar \omega_{nm}/kT}

Thus, the equation (8) changes

ρ(ωnm)=AnmBnm1gmgnBmnBnmeω/kT\rho(\omega_{nm})=\dfrac{A_{nm}}{B_{nm}}\dfrac{1}{\dfrac{g_m}{g_n}\dfrac{B_{mn}}{B_{nm}}e^{\hbar \omega/kT}}

If we assume gmBmn=gnBnm...........................(9)g_mB_{mn}=g_nB_{nm}...........................(9)

ρ(ωnm)AnmBnmeω/kT.............................(10)\rho(\omega_{nm})\approx \dfrac{A_{nm}}{B_{nm}}e^{-\hbar \omega/kT}.............................(10)

On comparing,

AnmBnm=ωnm3π2c3.........................(11)\dfrac{A_{nm}}{B_{nm}}=\dfrac{\hbar \omega^3_{nm}}{\pi^2c^3}.........................(11)

Equations (9),(11) make equation (8) identical with equation (5) and also shows three Einstein coefficient are interrelated. For non-degenerate states gn=gm=1g_n=g_m=1

Therefore, Bnm=BmnB_{nm}=B_{mn}

That is, when an atom or a molecule with two energy levels is placed in electromagnetic field then prob. of upward and downward transitions are the same. 


About John Doe

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Report an issue

Related Posts

3 Comments

John Doe

5 min ago

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Reply

John Doe

5 min ago

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Reply