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D’ug} gand Structure of Salids zg
thE I \ '_|||I] i . I
H“”I‘“i;”" conditions are (dug Ly ntiniil T
ﬂ.nﬁ A |-,..! | 0
_ﬂed 0at v=l
_um
Putting ¥ (x)=0 when x =0 in eq. (4), wi et
| 15 yri 0 \sin k.04 Heos b ()
0=04 RBx1
IR0 |

Using w (2 ‘I J =) tq (4} l|L'|.l'tl|.'--
wil)=A sink.L=0

V]
120 (otherwise y (x) =0 for all values of x), hence
sink.L=0
] nm
I J‘-.’: L A8
shere n = 1.2, 3.... . Thus the eq. (4) for the allowed wave function becomes
.. nn’
W I[:c}:At-sm[ \.I ()
1) G
he The allowed energy values or eigen values can be obtained from equations
3) & %) as
nn [Z2mE
4., }l::_: I &
£y oy
2 2.2 3
I EH == E :’1 K—E- il 10a)
. 9
2m L~
9.9
E. nth ..(10h)
B
: 8m L~
L . 9
E,«n ikd 1)
oX . : el E,
A graph between E, and n is shown in fig. 2.4 it T
2) shows that the energy levels ol particle (here, electron) . .-‘;
“onfined within the box are quantized or discrete. The /
je [ ,-F””.fr'l-' between energy levels depend upon n :111.“‘,! L, A E, = n?
s Where n iz known as gquantum number Thus
r-”“fl“'“:”",]-”_ ril EJll,[n'LrIj“ tl‘“llﬂ Tis IIHE””lzﬂTl“” ”rl s "-.“"”IHF -
| levelg / Purabolic
) ! To evaluate the value of A, we normalize the wave —en
s function W, (x) for which Fig. u&“ﬂ"'ﬂ

f:- w:{;‘]\p”{_ﬂd.r =1
]

)
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- 108 x| |a |
o =1 W
& 1.1 e & |
N {
: 3= =1
3 [y o : . {n=9
1 e i If”l / 9
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= ! — |
Substituting it in eq. (9, we get
¥ f I:':_"l & E . o = N =
W, (2)=, /=8 o =a(12) = 3= 2L |
Ve L) e B
First three energy levels and eigen Fig. 2.5.
functions corresponding to n=1, 2, 3 are shown
in fig, 2.5

2.1.2. Fermi Energy

We know that free electrons in a erystal or metal are distributed among various
discrete energy levels in accordance with Pauli's exclusion principle, according to
which no two electrons can be in the same quantum state. In other words, if
one electron is in a specific quantum state, the other electron must then be in a
different gquantum state.

In a metal, an electron in an energy state 1s specified by n (principal quantum
number) and m, (magnetic spin gquantum number). One quantum state denotes one
set of values of n and m,. There are two possible values of m(+1/2) for each value of
n. Hence each energy level corresponding to principal quantum number n can have

two guantum states (m, = +1/2) and hence can accommodate a maximum of two
S i 1 : (
electrons — one of spin up | i.e., m, = +-] and other of spin down Lms _2 ]
- 2

Fig. 2.6 shows the filling up of 7 electrons in different energy levels. The energy
levels with n <4 would be occupied while the "~ ° ==
d e

¢

levels with n > 4 would be empty,

n=4d4
“The highest filled energy level at 3 I
T =0 K is known as Fermi level and the "~ \|i« if -~
energy corresponding to Fermi level is 4 I
called Fermi Energy Ep" In this case, the "~ & e S~
energy level corresponding to n =4 is known o A
as Fermi level. n=1l F Y e

If N is the total number of electrons to be Fi9- 26 Filling of electrons in various ener@Y
accommodated, then if 718 even, we can write

leveis

o
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. ! 2n, N (1)
where ng 18 the pring
l : | §
(100 becomes pal quantum number of the Fermi level Hence lor A =npg =4
f' ; r| r||r 1 lrl'. LY

'ml am 1

s | aNY AYCNY

mi 21 | 2m\ 4L |

here (N /L) 1s the .
s a cubical bo :l n':u“h” of electrons per umit length For 3-I) metallic crystal
L Lt 1 I =1 i

ox), the egn. (12), (10) and (14) transform respectively as

(L€
-__IH TN, X (mn.y (M)
Wir) = [l sin l.--1ll'lI _ Y- |gin : .-.(15)
ik 7N e
— .
E: _rtfr k- ﬁzr-r: 2 o a3 =
= = I}(?11+11",+n‘;} ...[16)
am  2ml-
o ;
whETE n2=n;+n% +r1‘z;:.
213
E ﬁ'i f qnzﬁr | e ] _
F = ik L E)
‘?ml V J
8 8 . |
or .|— is the normahzing constant

13T

where n,, n, and n, are positive integers, =
: V2 WV

and V is the volume of the 2.0 box or erystal.

& » i |
-

2.1.3. Density of (Electronic) States

'The total number uf avmlable elm‘ mmr

and is given by

states per unit energy
noted by g(E)

dn ..(18)
]{H =
g5 dl
E[uE+dE-

nergy range

s present in the e
v level contains two

whi ,
e dn 15 the number of electronic state

Attording to free electron theory of metals, each untrﬁ n. therefore
Electronio states, one with spin up and the other with spini oW1,
- P e 19)
’ g dE
om eq, (10a), we have .

_n ,,.]
Er Em[b
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Substituting this value m eq. (19), we get
w 2x4ml?® Bml I
g ) : —— X
mh ' n

Again from eq. (10a), we have
2 & 2,2
v REY BEK
E = I |

i l':|
2ml L ) BmlL”

_ L _[_ A
e no | 8mIPE
1/2
Hen g{E EmLﬁ #l = kg l‘l
h* | 8mI2E
1/2
__4L[ m J (20)
'ﬁ- 2 E LR i
8(E) L_
VE
f
) S
| :
=N
2 (E) E::l‘-:l
e
= Filled =\
r‘ HII:IL-T —-_‘.'“:.._\
i ~— "—‘E‘._.T__:'&‘-"T.
o Ty \-".-.{"1'-- —_—
r, ~ ..:-..,__H.__.:x_:___ — --_-__ﬁ'iuu:_l:_v States
0 Ep P

Fig. 2.7. Variation of g(E) with E tor
Fig. 2.7 shows the variation of
indicates that all energy levels upto

& 1-D metallic crysial

density of states E(E), with
Ep are filled with
2.2. THE BAND THEORY OF SOLIDS

We know that electrons in an 1solated atom Possess discrete energy iE‘-’EI?
15,25, 2p,.... etc. (fig. 2.8 a). These levels are filled with electrons in the order o 1

energy K and it
electrons,
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: ; . a solid, they arrlaatjgi:
increasing energy. When these isolated atoms combine to form | due to periodicity,

themselves in an orderly pattern, called a crystal. In a crystd he discrete energy
each atom is in the electrostatic field of neighbouring atoms. T = tion hetween
levels of individual atoms are no longer valid. Instead, due to mtersc The number
atoms, each discrete level splits into closely spaced sub-levels {ﬁg, 2.8 }l._ s
of sub-levels is equal to the number of atoms N in the solid. Since N 18 Very all
(N=10*" /ce), therefore separation between these sub-levels 15 Very &

-2 ; : are
(=107*°eV). Hence these sub-levels are almost continuous in energy and thus

said to form energy bands. The first energy levels of various atoms constitute the
first energy band, the second energy levels form the second energy band and so on.
The energy band formed by valence electrons of atoms is called the valence band.
This band is the highest occupied band. The next higher band i1s known as
conduction band and is normally empty. Now these allowed energy bands are in
general separated by regions which have no allowed energy states. Such regions are
termed as forbidden energy bands or energy gaps.

ad Bd e ————— A -
3s _—————— :> Splitted
op
25
25
18 14
(a) Discrete energy levels for (b) Ent-rg}' levels of atoms
1zolated atom in a solid
Fig. 2.8.

The splitting of energy levels does not take place for lower levels 1s and 2s
because the electrons in these levels (being deep inside the atoms) are not
significantly affected by the presence
of other atoms. Further the 2p level
does not begin to split until the
interatomic  separation  becomes
smaller than actually found in case of
sodium. In fact 3s level is the first
occupied level to be splitted into
sub-levels, In higher energy levels
Splitting  occurs because electronic
Wave functions overlap significantly to
8lve rise to interaction between them. 0
Fig. 2.9 shows the splitting of various

energy levels in terms of interatomic
Separation.

Energy (V) ——»

h—__
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2.3. DISTINCTION BETWEEN CONDUCTORS, lNSULhTGFrﬁr Aor;Dsngs
SEMICONDUCTORS ON THE BASIS OF BAND THEO

I s o a . “‘i””rlp "I' Fi ‘-EHIIII IhLl.‘-l flllﬁ:']'e.nt
The energy band structure 18 a characteristi

; oq rise to the wide range g
solids possess different band structures which gives ri f

electr . & of band oecupatic
I ' nding on the nature of b atio
o i g 5 !'I-.' 'f"i.i'ii m IIH'Hl I'l"'FH (R s
i) arhidden energy bands, all solids can be classified ingg
A N

by electrons and the width ol 1
conductors, semiconductors and insulators

I I = I 1- - s 0 1 ] Wi i ﬁrl]" Ii 1 Wi | Il A L""Inf |
W n 1 irs 1= 'lE e Ale hi]‘-!" "h‘lh"J”l.r‘ 8 11
x‘ a | 5 Il ”l L Ls i“ N L L |

: a empty and there iz :

ympletely filled wath eloctrons and the conduction band 12 emp a
Ll ol | |

laree forbidden energyv gap (= beV or more

large forbidden energy gaj G e L

slectrons can not be thermally excited easily acro his gap from

1 ¥ 1 0 g i e
) between these two (fig. 2.10a), Because

of this large gap

| " ; ‘herefore an external electrie field (e
the valence band to the conduction hand. Therefore an ex g

electric potential) can not cause any significant current. For this reason, the
electrical conductivity of such materials is extremely small and may be regarded as
zero under x'-l‘dn::u-}Mmudilimm. NaCl and Diamond are good insulators having
forbidden gaps E_ = 6eV. When the temperature of an insulator is raised above
reom temperature some of the valence electrons may acquire enough energy to cross
over to the conduction band giving rise to an extremely small current. So resistance
of an insulator decreases slightly with increase in temperature. Thus the resistance
of an insulator have negative temperature coefficient of resistance.

Il. Conductors : Conductors (particularly metals) are those substances in
which the bands either overlap or are only partially filled (fig. 2.10¢). Thus electrons
and empty energy states are intermixed within the bands so that electrons can move
freely under the influence of an external electric field. As a result metals have

Empty :
conduction band
- ) E, CRB
i Pz s A s ; ——@& overlap @—@—
| Empty : 8 & @& 09—
¢ conduction band ! VB
=y B o o -
B, > 56V g I5Y oo o o o

| Filled . ]

valencel o o o @
| band |-o—e—o—o—-0- @@ Partially -8
e o o & 9 @@ filled oo
l " .- o o o @ - o o o 9o o
oo
: 009

Filled * o o oo

valence
band -o—@ lilled o—e—

@
(a) Insulator (b) Semiconductor () Conductor

Fig. 2.10. Energy band structures at absolute zero
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high electrical conductivity. However, their conductivity decreases with increase
in temperature. The olectrical resistance (or resistivity) of metals increases with
increase in femperature due to inereased number of collisions at higher
temperatures. Hence metals have a positive temperature coefficient of
resistance. Due to overlapping, the valence band also acts as the conduetion band.

Consider the case of sodium (Z =11). The electronic configuration of Na 1s
15> 28° Epﬁ 2¢! Thus the valence band (formed by 35 levels) 1s only partially filled.
On application of electric field, electrons can freely move into empty states within
the same partially filled band. This makes sodium a good conductor. Another metal
magnesium (Z =12, 15 257 2p° 9s2) is also a good conductor because in it, there 1s
overlapping of 3s and 3p bands. Current flow is possible in an electric field.

Thus the observed electrical properties of conductors ( metals) can be explained
on the bagis of their band structure. In fig. 2.10c, the conduction band is abbreviated
as OB, whereas valence band as VB.

I11. Semiconductors : The band structure of semiconductors is similar to that
of insulators at absolute zero temperature i.e. a filled valence band separated from
an empty conduction band by a forbidden gap which has no allowed energy states.
However. the band gap energy Eg is much smaller in semiconductors than in
insulators. For example, the semiconductor Si has a band gap of about 1.1 eV
compared with 6 eV for diamond. The other popular semiconductor Ge has still
smaller band gap of 0.72 eV. Due to relatively small band gaps of semiconductors,
electrons may be thermally or optically excited from the valence band to the
conduction band. Thus a significant number of electrons may be thermally excited
across the gap into the conduction band at room temperature. As a result their
resistivity decreases with increase in temperature. Hence a semiconductor has a
negative temperature coefficient of resistance.

At absolute zero temperature, the filled valence band has no empty states into
which electrons can move. Alseo in the empty conduction band, there are no electrons
which can move into vacant energy states. Thus there will be no conduction at all on
applying external electric field. Thus a semiconductor behaves like an
insulator at absolute zero temperature. The band structure of semiconductors is
shown in fig. 2.10b. Their conductivity can also be increased by the controlled
addition of suitable impurities in a process called doping, \ -

2.4. ENERGY BANDS AND BAND GAPS OF SEMICONDUCTORS

The important properties of semiconductors such as el
etc. depend strongly on the manner in which energy of the
depend upon the wavevector k in reciprocal (or k) space. The

a
Tl ll5d!
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0 there is only one electron in the

: hich
: ] case In W , : ot
Wa tonmidas iha hﬂ,‘mhftu.ul C Then in A time interval dt, electron energy
brillouin zon der consideratiot:
e under cons
ncreases by
' Tactric force
dE = work done by the li”r“.lrls- ee v Al . (4)
(=PE )L : % . .
, g equations (¢
flhp.dmirunqhuwnﬂr'"” dt. From equi 3) and
koo g -.”[ il
where dx is the displacemt

(4) iy
g r"| ’”j di
o Rl K
Therefor et FiRE 'l =
: n{.l'!'i "l?lx'ri'h“. I‘_”:_,.q'_ ---{1"”
: di i f'“

rauation (5) is analogous to Newton's law (
#K is the crvstal momentum. Equation (9) 15 analog .

“-hl'r‘l—' :I = " . ; ! :
for the electron in a periodic lattice.

maoaon
On differentiating eqn (3), we get
~ dv_1d(dE)_1d°E dK
dt h di\dK) hgK* dt
ee| d2E ) o :
= — | on using eqn (2)
" dK* |
I L
or . L EE]

(d2E 1 dK? }J dit

=

This eguation is of the type
Force = mass X acceleration

Thus the quantity within square bracket in eqn. (6) may be regarded as the
mass, It is known as the effective mass of the electron and is denoted by m*. Hence

mt=— h!— = @

d*E | dK* 4
l'l.-']f'J-!'!‘:Sl.‘I]lH the i:ﬂ'tJ{'Ei‘..-'H m::sr-_; of an electron in a band with a given (E,K)
IGL‘JI]UIIE}‘JII}.. Here d*E | dK* represents the curvature of the band. Hence the
curvature of tlh{J hand :__Iute:'minua the electron effective mass. The shape of the
energy bands in three dimensional K-space determines the value of effective mass.

The El{-?([trr_}ﬂ effective mass will be smaller in strongly curved bands (e.g., I') and

larger in those bands which have small curvature lyg-'- LorX - -

The band structure of GaAs is shown in fig. 2.16. The binary compound GaAs 18

a direct band gap material with a band gap of 1.43 eV at room temperature, It has
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. W[ i r i 6F 5 1 b
minima [ and X 1 its eonduction band e ndire
'y
f 11
'l
() Tk | "
¥ L ..|||.|
1 binniel
E.=1.43eV|
E=10 '
e — S ...H'
o T .H.H"\-\.
L Valence band -
Fad s
/ b 3

M,

Flg. 2.16. Band structure of GaAs

For & band centered at K =0 (e.g., I' in above figure), the (E, K) dispersion
r near the minimum is usually parabolic given by
2 2
he K : ;
E=— +E, (8)
2m™

18 Case

e 4 , ks -
the effective mass m* turns out to be a constant Similarly, for a

free electror

2 &
. KK
E = :
am
d*E K-
‘,‘;KE i
“"‘ h‘. fr

(d2EdK*)

' - mass. However
Thus for a free electron, the gffective mass ks equal to its i different from
& I 8 18 !
for an electron moving in & periodic potential, the effective mas
actual mass of the electron i.e.,
m¥« m lik
, : - ‘tron behaves hxe
In this case m * varies with energy £ or wavevector K. The elec

o s ic potentials means
a ]llil.r'tlc_'](_- Wlth VH.I"IH.I!I':‘ l‘ft.l‘l'ti'l“-' MAass Ihu! uﬂ't“,l- Ur pb‘r]ﬂ(llL I'"‘
replacement of m by m*
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In many conduction bands the (£, K) relationship is not parabolic, rather they
have complex dispersion relations which depend on the direction of electron
transport with respect to the prineipal erystal directions. In such‘ cases, tzhe effective
mass 1s a tensor quantity. Further in fig. 2.16., the curvature d’E dK* is pogitive
at the conduction band minima, but is negative at the valence band maxima. Thyg
the electrons near the conduction band minima have positive values of effectiye
mass whereas the electrons near the top of the valence band have negative
effective mass. Valence band electrons with negative charge and negative magg
move in an electric field in the same direction as holes with positive charge apg
positive mass. For materials with nearly filled bands, m* will be negative. For holes
near the top of valence band, m* will be negative.

The effective mass of an electron in a metal can be determined from cyelotron

resonance experiment. For most metals,

M <m*<2m
2
The following table shows the effective mass values for semiconductors Ge, Si
. * -
and GaAs in terms of the electron rest mass my. Here m, denotes the effective mass

of electron whereas m; that of a hole. L
Table 2.1.
Ge Si GaAs ’
m, ‘]55 mﬂ 1.1 m.l:, Dﬂﬂ'? mﬂ
m, 0.37 my, 0.56 my, 0.48 m,

-
-

2.6. FERMI SURFACES |

In a solid, at very low temperatures the energy bands are filled with electrons
upto a certain level, called the Fermi level. The energy corresponding to this level
1s called the fermi energy Ep. All levels with E Eyp are empty. In th
dimensional K-space the set of values of K v Ky and K, which satisfy the equation

D g 2 2 i
(K, +K,"+K,")/2m=Ep, form a surface called the fermi surface. All

(K., K, K,) energy states that lie below this surface are full, and those above this
surface are empty. The fermi surface encloses within it all the electrons in the
conduction band that carry electric current. Thus we can say that fermi surface of
any metal is the surface of constant energy Eg in the momentum (or K-) . i
At absolute zero of temperature, it separates the unfilled quantum states from the
filled ones. The shape of the fermi surface plays an active role for deter ni

electrical properties of metals.
The fermi surface of a good conductor such as copper (elec
n=8.5x10%%) or silver (electron density n=5.86x 10%2) can fill the en

cmma In tha ssmndanad K a Swasitiozn - i
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doping) concentration at room temperature. For example, INIrinsic slULUil Gt

7=300 K has electron mobility p, =1d0U em? /V-sec which decreases to just 700

o . 17 A
em < /V-sec when silicon 18 doped with 10°' donor atoms pel CAEL

2.10. EXCITONS

An electron and a hole may he bound together through their mutual attractive
olectrostatic (i.e., coulombic) interaction. The bound electron-hole pair is called
an exciton. It is electrically neutral. It is an analog of positronium atom in a solid
<uch as a semiconductor. Some excitons are intrinsically unstable with respect to
decavs into a free electron and free hole. All excitons are unstable against the

ultimate recombination process In which the electron drops into the hole.

he positronium atom is the hound state of an electron and a positron under the

~ttractive coulomb force. Its energy levels are given by

: aq- 6.8 <«
gl g e oy 1)
Sneqgapn n-
2
: : 4n ey h” s
where, an, = Bohr radius = 0" —0.0529nm
i3
myq”~
mq = free electron (and positron) mass -9.1x10™* kg

g = charge on an electron

n= principal quantum number =1, 2, 3, ...«

_T or ground state (n=1), the energy of positronium atom 1s just —6.8 eV which 1s
half of the ground state energy of the hydrogen atom. This is because the effective
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mass of positronium is half of that of the bound electron-proton pair in hyq,

atom,
- | the hole ;
In a semiconductor the electron is in the conduction hand, ant E }]_u 18 1 th,
() and hole (my ) are less thy, the

vale Pl |
nce band. The effective masa of 11 |rf|lllli s of an exciton (hound "]""'rfin.h,
mass (mg) of a free electron. The elfective mnass o ] 5
pair)
N . Biad, m, -
m.+my  LAlmglng)
* hecomes comparable with the

' 38 swwoelbon m
- 1 effective mass ol excl . P I
I{ mr % My . Th[ ne —() '_-_,j ; i’hu" m (). 854 m, 'T hl*ﬂ- I8 1_|-|h

electron effective mass. For example, if m,, /ny 3 : |
; - < I where € 18 die

case with GaAs. Also for these materials 7.2< e/eg < 17. Mgl 0 electr,

constant of free space and "I'El'l iz relative dielectric L{H‘istﬂnt.- | “.‘! 1258 LW rﬂ(‘tnrﬂ

decrease the exciton energy E’ relative to the energy of positroniurm atom. Exejpon
- levels -efore given by

energy levels are therefore g : ) .

‘ 13.6(m*/mg) .
E i (3

_(m*mg)  ¢q
B = 2 2 2 .2
(eleg)” 4dmegapn (eleg) " n

These two factors (ie., effective mass and relative dielectric constant) alsq
increase the effective Bohr radius of the electron orbit, which 1s expressed as
ele 0.0529
@y =——— @ =———" nm -4}
m*[my m*img
For GaAs, m*/my =0.059 and using the relative dielectric constant for GaAs, we

get
E}=4.8 MeV

and @ i =11.8 nm

where E} is the ground state energy of exciton in GaAs. The effective Bohr radius of
over quite a few atoms of the

the dimensions of a typical
ical spectra.

exciton (= 11.8nm) suggests that an exciton extends
lattice. Its radius in GaAs is comparable with
nanostructure. An exciton exhibits characteristic opt

2.11. TYPES OF EXCITON

Two limiting categories of excitons are as fallovia

I. Mott-Wannier Exciton : This is the weakly bound exciton as the one
discussed above. The average electron-hole separation is large in comparison with 8
lattice constant. Its energy levels are similar to positronium atom as shown in fig.
2.23, though respective levels have lower energy values compared to positronium.
Exciton levels lie in the forbidden gap. Excitons may be produced when photons o
energy lower than the band gap energy, £ g+ are absorbed by the crystal. Almost all
the excitons encountered in semiconductors and in nanostructures are of the

Mott-Wannier type.
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gap
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effective mass = my

Fig. 2.23.

I1. Frenkel Exciton : A strongly or tightly bound exciton, called a Frenkel
exciton, is similar to a long-lived excited state of an atom or a molecule. It is small in
size and is localized on any atom in the crystal. An ideal Frenkel exciton will travel
as a wave throughout the crystal, but the electron is always close to the hole. The
excitation wave of an exciton travels through the crystal just as the reversed spin of
a magnon travels through the crystal.

Sulved Exa:EPlcs

Ex. 1. C;!cu!ate the fermi energy when it is given that :
= 0.8 electrons per A, h =6.6x10"* Js, m,=9.1x10 " kg.

Sol. The fermi energy in one dimensional case is given by
- [ N

F . = —

| 2mi4L
Substituting various values, we get

By - (6.6x10734)2 [1 0.8 ]2

2x9.1x10°% |4 10710

=0.0957x10717 J

=9.57 :'F-lf.r'lﬁ J
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;2. CLASSIFICATION OF LOW DIMENSIONAL MATERIALS

Material : It 15 g oo d

Bulk ; thres dimensional structure |
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Boht radius [he particle i1s free to move throuel I I|
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tization of the particle motion vecurs b

and Dotz
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I TE |.||=_flI Lnan I||-I --'a;rirr.n
villume of the material

.
L)

;11] an

| : 1 Coni LFEd ) - T
energies between a mimimum and maximum ontinuous range of

Low dimensional structures are classified on the |
i Xl ; L L FEE] f
dimensions they possess. Dimensionality refers to the numl
T * TILITDE]
-.:-'.‘-m‘] !\f\ 1]'“.* ]_1;“'1“-]“ I'he

'|1-c-r_1:-'l low dimensional

yimensionality , are of the following types

Lrudture

. .

iretadia b .“ i two-dimensional nanostructure in whi
.-,w'-'-l"I!'l“m"‘]“ along one direction and particle i free to move in other tw
(ke, M8 ]11:““".:" Particle possess discrete (or quantized) energies associated with |
confinement dimension. Particle energies are .-mﬂinur.-u; along the ot
unconfined) dimensions.

b=

9. Quantum Wire : It is a one dimensional nanostructure in which there is
nfinement along two directions and particle is free to move in the third direction
Particle has discrete energies associated with these two directions of confinement
and continuous along the third (unconfined) direction.

3. Quantum Dot : The extreme case in which confinement of the particle occurs
n all the three directions, results in a zero-dimensional nanostructure, called
quantum dot. In this case, the number of degrees of freedom of the particle 1s zero.
Particle has discrete energies associated with its motion along all the three
directions. Examples of zero dimensional objects are-nanoparticles, clusters, colloids,
nanoerystals, and fullerenes. Quantum dots are composed of several to a few
thousand atoms.

/ [ 7| ¥ ;’f
fi=———t e

==
pruie | 6

Well (2D) Wire (1D} Dot (01
Fig. 3.1. Reciangular Manostructures

FaT;

Bulk Material (3D)

jon it 1 I duced dimensionality structures are
From above discussion 1t 18 obvious thtlt.!“ﬂ _ | :
labeled accnl;'ﬂding to the remaining degrees of freedom in the particle motion, rather
than by the number of confinement directions.

3.3. QUANTUM SIZE EFFECTS | |
The properties of 2 material are characterized by a specific ‘length scale

th eter dimension. If the physical size of the material is reduced
“Sudlly on the nanom
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semiconductor. Quantum structures such as quantum _.___.:k__m. quantum ﬂﬁ.mm or
quantum dots are characterized with very small concentration of m_mnﬁ.c.:m..b higher
doping level 1s required to have any significant electron concentration if size of the
nanostructure is reduced below the electron de Broghe wavelength

3.4. QUANTUM CONFINEMENT

In small nanocrystals (i.e., nanomaterials), the electronie energy levels are not
continuous as in the bulk but are discrete (shown by the existence of finite density of
states), because of the confinement of the electronic wave function to the physical
dimensions of the particles, This phenomena is called quantum confinement and
therefore nanocrystals are also referred to as quantum dots. For a semicronductor
particle, quantum confinement occurs when the nanocrystal radius becomes
comparable to the exciton Bohr radius. The confinement leads to a transition
from continuous to discrete energy levels. When materials are so small that
they lie 1n the gquantum confinement regime, then their electronic and optical
properties deviate substantially from those of bulk materials. The discrete structure
of energy states leads to a discrete absorption spectrum for a nanostructure.

A guantum confined structure is one in | Conduction

which the motion of the electrons and holes are band ¥
confined in one or more directions by potential _,,Ehwmm MEm. \4

barriers. If the charge carriers are confined a Discreta

along one direction and delocalized (i.e. free) in Ey levels

the other two directions, then the resultant ﬂn_ﬁunm /..!

slructure 18 a quantum well. When the b ot

confinement oceurs in two dimensions and the | (continuous i

“arriers are delocalized in the remaining third atates) .

dimension, then the resultant structure is a Bulk

Uantum wire or nanowire. A quantum dot Flg. 3:2. Transition fom o6e

May have shape of a tiny cube, a short discrete energy levels
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eylinder, or a sphere with nanometer dimensions and exhibits l'rr}IF;l}‘fll'Il‘lnl.‘H!. i
7 "Aae 3 Fi .
three dimensions. There is no delocalization in this cn ¢ follow;

d
A all the F
limens - -
summarizes the confinement and delocahzation  dimensions  for

ng Ti’-lhh._n

nanostructures + ‘ :
Tahle. 3.1, 1
Structure | Confinement Delocalization (or s
I rue : .
5o Dimensions Iji"’lEn_:",nn“ ' |
r U dx, ¥z S8Y)
| Bulk conducto by
) ' z) 2 (%, ¥
Quantum Well/Superlattices 1 (: p
2{x, ¥ I (2)
Quantum Wire 2 (x, v) ‘
: N J
Quantum Dot/Nanocr) stals B A TR 5

el

\¢ more number of the dimensions is confined, more discrete energy levels can
he found, i.e. carrier movement is strongly confined in a given dimension

Nanostructure Representation

Quantum Well — Particle in 1D hox

Quantum Wire — Particle in 2D hox :
Quantum Dot Y — Particle in 3D box

The density of states I(E) determines the various electronic and other
properties and as shown in Fig. 3.3, D(E), differ dramatically for each of the three

nanostructure types. Thus the nature of the dimensionality and of the confinement ‘
associated with a particular nanostructure have a noticeable effect on its properties.
Bulk (3D) ‘

D‘ Quan{tzu[ll? Well Quantum Wire Quantum dot (0D)
{1D/ e
s

D (E) D (E) D (E) D (E) !
+ Y 'Y

&

e — —l_ —+ | —=— E E 1
Eg By Ey Ky
(@) (h) c) (d)

Flg. 3.3. Density of electron states for nanostructures

3.5. PREPARATION OF QUANTUM NANOSTRUCTURES

There are two different approaches

of making quantum nanostructures :
I. Bottom-Up Methods : In the bottom-up approach, material and device are
built from molecular components which assemble themselves chemically by
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principles of molecular recognition. This 15 t‘:lr'rr‘jf_'.tll out by a sequence c.:f
chemical reactions which are controlled by catalysts. I'his bottom-up appmach_ 18
widespread in biology where enzymes (working as catalysts) :ll-i:-;l:'n'ih]l..' amino
acids to construct living tissues that forms and supports the organs of the body. It 1s
hased upon self assembly of atoms or molecules into a structure.

Bottom-up methods should be capable of producing devices 1n parallel
(simultaneous production) and are therefore, cheaper than the top-down methods.
There are many examples of self-assembly based on molecular recognition in
biology, such as (1) Watson-Crick base pairing, and (i1) enzyme-substrate
interactions,

I1. Top-down Methods : This approach of preparing nanostructures starts
with a large scale object or pattern and gradually reduces its dimension or
dimensions without atomic level control. Top-down methods use a technique
called lithography. In this technique, we shine radiation through a template onto
a surface coated with a radiation-sensitive resist. The resist is then removed and the
surface is chemically treated to produce nanostructure. A resist is a soft material.
Polymethyl methacrylate [C50,Hg],. a polymer, is a typical resist material. Fig.
3.4. shows the lithographic process of obtaining a quantum wire or quantum dot
starting from a GaAs quantum well formed on a substrate.

Quantum

Wire
A

Gahs Dat

Cuantum - i
Well
Substrate Substrate
) ®)

Fig. 3.4. Formation of Quantum wire or dot from a well

The whole lithographic process takes place in a number of steps as shown in
Fig. 3.5. In the first step, a radiation sensitiyve resist is placed on the surface of the
sample substrate (Fig. 3.5a). An electron beam tused as a radiation) is made to fall
in the region where the nanostructure is to be placed (Fig. 8.5b). This ca El:e
achieved either by using mask that contains the nanustruutlure: s;tt.e “LE
scanning Elec“_”“ beéam that falls on the surface only in the delsii:'ed et
radiation uhemmalll}' modifies the exposed region of the resist and kmgm- Th.e
in a develuper-l I tlhf-‘ €Xposed material ig etched away by the d ml;.oaa : Eplublﬁ
unexposed region 1s resilient, the material s Eﬂlle; aypl;nsiti?:val‘l}:;z aﬁdthlg

unexposed region 18 etched away by the b T di3: i
resist. In the next step (Fig. 3 5¢), developer {e.nptr. then resist is called a negative

B, tetramethylammonium hydroxide)
of the resist, i

is applied to remove the irradiated portions
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(d) (e) () (B)

Fig. 3.5. Steps for the formation of a quantum wire or quantum dot by electron-beam __:._omi_...__:.-.

In place of an electron beam as radiation in lithographic process. we may also
use neutral atom beams (e.g., Li, Na. K Rb, Cs); charged ion beams (e.g., Ga™): o
ignetic radiation such as visible light, ultraviclet (UJV) light, or X-rays.

] " "y .
.n.h._.ﬁ.__.. HH L ._.-“_.......ul. 18+ ik

Laser beams as radiation source are suitable for quantum-dot fabrication

il

3.6. FABRICATION OF QUANTUM DOT ARRAYS

Quantum dots are very small particles or nanocrystals of a semiconducting
material with diameters in the range 2 to 10 nm and made of about 10 to 50 atoms
These are zero dimensional materials in which electrons are confined in
3-dimensions. Quantum dot arrays are the collection of a large number of quantum
Jabricated simultaneously for specific applications. These aggregates of

dots
m dots possess unique quantum properties and cooperative interactions

quantu

useful for many technological applications. In this case, instead of starting with a
single quantum well, the process starts with multiple quantum wells.

Let us consider a multiple (here four) quantum well structure as shown in
Fig. 3.6. First of all a radiation sensitive resist is placed upon it, then a template or
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mask film is used with s1x circles cut out of 1t. Following all the steps explained in
Fig. 3.51 we Ccan prﬂd“rp a 2,1 ”.”“”j“n] 1i”| array. I1n '..‘.."Jil{'h l.hE!rl- are s1x ::U].UITIHH.

ey

each containing 4 stacked quantum dots as shown in g, 5.
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£
Fig. 3.6. Multiple-quantum-well arrangement mounted on a substrate and covered by a resist

The advantage of fabricating quantum dot arrays is that the arrays produce a
greatly enhanced photo-luminescent (PL) output of light. Experiments have
shown that a photo-luminescent spectrum from a quantum dot arrav is more than
100 times stronger than the spectrum obtained from the initial multiple quantum

wells,
Quantum
Dote
Fig. 3.7. 24-fold (or 6 x 4) quantum-dot array formed by lithography
3.7.QUANTUM WELL AND SUPERLATTICE | L.« Y Quovbivawell cbueetice

The term ‘well’ refers to a semiconductor region that is grown to possess a lower
€nergy, so that it acts as a trap for electrons and holes. These wells are called
quantum wells because such semiconductor regions are only a few atomic layers
thick. Quantum wells are real-world implementation of the “particle in
one-dimensional box” problem. They are experimentally realized by epitaxial growth

of a sequence of ultrathin layers consisting of semiconducting materials of varying
€0mposition (i.e., varying bandgap). |




Quantum wells are formed in semiconductors by having a material hike gallium
arsenide (narrower band gap) sandwiched between two layers of a material with a
wider band gap, like aluminium arsenide. These structures can he grown by
molecular beam epitaxy (MBE) or chemical vapour deposition (CVD) with control of
the layer thickness down to monolayers (i.e single atom thick layers).

Two dissimilar semiconductors with different hand gaps can be _]rnnr-rlrl Fn form g
heterojunction. If a thin laver of a narrower band gap m'r.ftr.erml A' say, is
sandwiched between two layers of a wider band gap r‘rmh.-rls]] B'. then we E,’_E't a
double heterojunction. If the layer A is sufficiently thin (i.e., in the quantum regime)
then such a structure is called a single quantum well. The quantum well formed by
the heterojunction between a wide band gap semiconductor and a narrow band gap
sennmndu.vlnr ie shown 1n Fig. 3.8.

Valence band
Fig. 3.8. Single Quantum Well

In the same manner we can form multiple quantum wells or superlattices. A
multiple guantum well exhibits the properties of a collection of isolated single
gquantum wells whereas in a superlattice the barriers are very thin such that the
wave functions of adjacent wells overlap strongly. In multiple quantum wells
the barriers are wide enough such that wavefunctions in adjacent quantum wells do
not overlap. This means that the tunneling probability from well to well 1s

essentially zero in multiple quantum wells. However in superlattices electrons are
delocalized and ean easily tunnel out.

Well / F-Hcll'riié'-l‘i Overlapping wave functions
—
| 1, S B [ ANy
“ f‘;ﬁ fb| EA
(a) Multiple Quantum Well
Fig. 3.9

-

(b) Superlattice

A superlattice can represent a lower dimensional structure such as an array of
quantum dots or quantum wires. The periodic arrangement of quantum wells
superimposes a different periodicity on top of the physical lattice, hence called &

_—a
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superlattice. This gives rise to the formation of minibands within the
superlattice. It should be noted that the same atructure can be o multiple quantum
well at low temperature and superlattice at room temperature.

3.7.1. Application of Schroedinger Equation to Infinite Patential Well

Let us now discuss the problem of quantum confinement along one direction. It
18 same as the problem of particle in one dimensional box. Ina = ’
quantum well (2D structure), particles are confined to a thin :
sheet of thickness “a’ along the x direction by infinite potential
barmers, which create a quantum well as shown in fig. 3.10. ‘

In real systems, this confinement is due to electrostatic Lv P
potentials (generated by external electrodes, doping, strain, z
impurities etc.); the presence of interfaces between different Fig. 3.10. Particle in
materials. the presence of surfaces; or a combination of these infinitely deep potential
agents. -

The potential function is

—

,V(x}t{“’ for O<x<a L

©, for x<0orx>a

The Schroedinger equation in the potential well region where V (x) =0, is

h d?y(x
_haty(x) _ Ewv(x)
2m dxz
d%y 2mE
dx? 42
2
or d_'i-}-kij :U Heh [2]‘ k:ﬂ hﬂ
dx® A
The boundary conditions are
W) =y(a)=0 o N
The solution of equation (2) can be written as v il el

Wix) = Asin kx + Beos kx
Applying w(0) =0, we get B =0, So
Wvix) = Asin kx
Now w(a) =0 gives, 4 sin ka =0
Bin ka =0 =sinnn
kﬂ -nul n =1l_'2|'31',i,_l2{
or - B
: a

or




. (£) B
Thus, the solution of eq¥ n - (5)

tion of wave function
L

1I|_'||'| II|I"|
| " T % |
i
W Va
) i L
w(x) ain !
il Lf
: eigen functions ol the I:.‘Hfll'rd inaide the we
dmlils
% :
he
n“n* 2mkE
a” h*
o 9. 9 272
i nen*h n-h -
or 'F-"r.' E = — = ;

. o
Ima* Bma”

&ré the discrete energy states of the particle within the quantum well
FERIon. However, outside the well region particle energies are continuous. Here n is
called the principal quantum number.

2_n2xZp2 2 52
B i =5 in+1)" - n”in®p _2n+1=a°h
“irn+1]) = — = M

-J W =— =
2ma* 2ma*
: : ] .
(B —E,) o -~ and o« (2n +1)
{1

'€ dimension (=a) of the energy well mncre

AlsCret: r_'_--_r;.l', |

ases, the spacing between
levels de reases. In the

infinite crystal (je. bulk), a continuum

Above analysis shows Lthat confinement of particle

moton leg
of quantization of particle

\ds to discreteness

energies. The spacings betw een energy le

‘Vels Increases as
principal quantum number n inere

ses
Zero Point Energy

I'he lowest €nergy (for n =1) in the above case |s
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Fig. 3.11. First three eigen energies and eigen functions

This energy E; is called the zero-point energy or confinement energy. Its orgin
lies in the Heisenberg's uncertainty principle. Since the particle is constrained
within a finite region, the variability in its position has an upper bound i.e.
uncertainty in its position is finite whose maximum value can be ‘a’. Therefore
uncertainty in particle's momentum cannot be zero, the particle must contain some
energy in this lowest state. The zero point energy increases with decrease in the
width of the well.

3.8. QUANTUM WIRES

It is a one-dimensional nanostructure in which there is confinement along two
dimensions and only one dimension is free for motion of charge carriers. A quantum
wire or nanowire can be obtained from a quantum well by the process of lithography.

A  standard quantum well layer can be fabricated by the process of
phnmbthugr?iph}' or electron beam lithography and chemically etched to leave a free
standing strip of quantum well material; the latter may or may not be filled in with

X
} X ./,{}al_x Aly As
z
d Gads
Quantum

Well

Fig. 3.12.




; ; A<) Anv charge carriers are
an overgrowth of the barrier material (here, Ga, Al, As). An:

] -« growth ax . (».axis). as they were in the

still confined along the heterostructure J_rw.}! h”fi:«l.h“{f Sl g
' J#rin 1e narrow enough then they alt & :

quantum well, but if the strip 18 narro e enling or I b

additional direction which may be either x - or the y-axis, dept g y

: . glectron (or hole) ;
In the Fig. 3.13. a quantum wire 18 shown in which the electron ( le) is

- e, X))
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Fig. 3.13,

_/ﬁ? Application of Schroedinger Equation to the Problem of Particle in 2D Box

The problem of a quantum wire is analogous to the particle in two dimensional
box problem from the confinement point of view. Let us consider a two-dimensional
box as shown in Fig. 3.14. Let confinement is along y- and
z-directions and the motion of the charge carrier is free along
x-direction.

-

The potential V(r) is written as the sum of a two
dimensional confinement potential (in the yz plane) plus a Fig. 3.14. Particla in

potential along the wire (i.e,, along x-axis) as e
V(r) =V (x)+V @3 ¢y 2 w (1)
The wave function may be written as
2 1 il
v (r) =y &3 (y.2) v (@)
The time independent Schroedinger equation is
J he [ a2 . g% g2 v E 3)
o s e ol v 1AL '
l 2m ﬂx‘j ﬁ:,,r‘! .,;'"iz‘s A |

Putting for V and y from (1) and (2), in eqn. (3),

we get
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A* (ot 8% 9%
= - VO v 2D (5l WDy @3y
{ 2 [E'JIE aj,ﬂ pz* o WY I {7:%)

=By )y (y,2) . (4)

Writing E=EV +E®® and noting the fact that potential is zero everywhere
inside the box (i.e., V" (x) = 0), equation (4) is equivalent to two equations which are

as follows :
2 42 .101)
_hT dTy (x) = EWy Wy ... (5a)
2m 4l
2 2 22 . j
and - L 5+ z} v®9 (5,2) +V A (3,2) y P (5,2)= EEDY@(y,2) .. (5b)
2m | gy* oz

o+ wilu e BNy 3
W+ 2T () = o

Equation (5a) may be written in the form - Tl ‘e
_2mEWY

d* w':l}{x} 2...(1) ; ﬁf
———— " +hkiy  (x)=0 .. (6), ="
=

It has plane wave solution given by

v (x) ~exp(i k, %)
where k_ 1s the particle momentum along x-direction in whmhxtm&eu to move with
energy
ﬁ.ﬂ kﬁ -
E{IJ i et 1 e
2m T |mm _.%'m

Now to solve equation (5b), the potential V @3 (y, z}@m m -

V23 (3:2) = { 0 whenO< y<b anﬂ E}ﬁ:;ﬂ-ﬁ*f ol
w  otherwise :

Outside the box, w*“*(y, 2) =0 because particle cann
within the box, equation (5b) in the light of eqn. (8),

"::: [:; +:2] w9 (y,2) = @Dy

To apply the method of separation of variables, let

wﬂ.ﬂ] {y;zjtwm(y] v“’-h}
E@Y _gp@  p@

Using these two facts, eqn. (9) breaks into two equ

-—
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ne d* 1|r"‘” () _ g @y @y . (10a)

2am  dy*

a2 llrﬂ:ll (2) 5 @)y (3¢ 2) ... {10b)
S 2m dz*

. mayv be written as
These equations mMa)

A }J.-: '.‘L'F'l"'f.'t";{zj
£ ¥ i3 P . N a): , : -
ay 'i i .I-L".I e Y =1{) (11a) h-":
ay’ 5
3 g ZmE™’
Py |, g2 ansy | =it
and oo, A et 2 ] (2)=0 ¥ 2 h;'
:i"\-..'l'

Both of these equations are similar to the Hchrndinger_::*Irumtirm in the infinitely
deep potential well and have the same boundary conditions too. The standard
houndary condition of the wavefunction being continuous at the walls of the box
implies that the product of w“(y) and w®)(z) must vanish at the walls. These

boundary conditions when applied to (11a) and (11b) give normalized eigen functions

a&
(2) 2 . (nymY), )
y) =.|=sin : ., =12.8...
w”;r{" } \J b [ b 4
3) 2 . (n,nz
and W (z):J— sm{ ]: n,=123...
e g c
Therefore,
n.,n
y@d o isin[ 2 ‘T) sin[n"'ﬂz] .. (12)
(ny, nz) be b c

A8 18 clear from (12), the quantum states in a quantum wire are described by

tWo IJ_rlntiIJ:;a] quantum numbers n, and n,. The energy levels of a quantum wire

K. , = e L e 1,2.3,...
2mb ' a9
2 r & :- TRl
ol 5 ! = h? n;i
gl == o B AL T L
2m e

The energy ascociata : )
&Y associated with particle motion in free direction (i.e., x-) 18

2 42

E[-‘ir} = h k.'l: (14}
2Zm

‘A
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Thus, total energy of the particle in a quantum wire is given by
22 & & P, L N B
4 h“ky n°h"n5 nhn”
PJ'.FI ure Hx) (k) 3 £y _JII ! — .+:(18)
“in 2mb* 2me”

Thus, the energy of the particle along the confinement directions (y and 2) is

discrete whereas it can have any value along unconfined (or free) direction (ie..
along x -axis). Total energy of the particle in a quantum wire is not thiscrete.
Further, the eigen energy in a quantum wire increases for decre

asing size and a
lower eftective mass results in a larger eigen energy for

a gven si1ze of the box

The applications of nanowires are due to the fact that besides exhibiting

quantum confinement effects, nanowire materials are at the same time in the shape
of wires. So making electrical connections to the outside world and assembling

actual devices may be a lot easier than with other nanostructures, such as quantum
dots or gquantum wells.

Crossed nanowire junctions have been made, using p-type and n-type
nanowires. These may be used as diodes, or memory elements or as electro
luminescent devices (LEDs or Solar Cells), Nanowires have also been used as
sensors for monitoring changes in the conductance experienced when different
compounds or gases are adsorbed to the surface of the nanowire. Thus, in future,

nanowires may serve as efficient sensors for minute amounts of toxic gases,
chemical weapons and explosives.

3.9. QUANTUM DOTS

It 1s a zero dimensional nano-structure in which there is confinement of the
particle along all the three directions. The particle is
direction. Quantum dots have
their radii in the typical range of — =1

2 to 10 nm. Quantum dots can be il = i
formed by lithography and L A

not free to move in any
- {;H‘l--'l: ."\..lx Agr

...!' ?J
etching if a quantum well sample ' /}{
18 etched to leave pillars rather T
than wires a8 shown in Fig. 3.15. Fig. 3.15.

u-”.;_-' o '-u:"l-?
3.9.1. Application of Schroedinger Equation to a Particle in Quantum Box ' /"

Let us discuss the proble
from confinement point of view, We consider a
cuboid quantum dot or quantum box as shown ¢
In Fig. 3.16(b). Spherical quantum dots require [/I
numerieal solution of Schroedinger equation, ¥ .y
The quantum box 18 a generalization of a
duantum wire of rectangular cross-section in
Which there is additional confinement along o

m of quantum dot

il
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Thus, the particle has no degrees of freedom in itg

_direction such that 0< x<¢€. | ‘ .
gy 1 in all the three directions. Hence, it has discrete

momentum and it 18 now localized

energy states -14-‘.11(1:11&‘1] with all the three directions of motion.

' ) 3 . anantum box but infinite everywhere g]
Let the potential he zero inside the q L

L€,

0N forD< x- a 0<y<h and O<z<c¢ )
(x.v.2) = 9§ we 1)
vz ll" otherwige

Three dimensional time independent dehroedinger equation within the box
(V =0), 1s
2 | '\--‘3 1"2 'IL:

s o AR v (x,3,2) = Ew(x,5.2) (2)

2m Uirf oy: 0z
The wave function may be written as a product
v(x.y.2) =y @y? (»v? (2) (3)
and the energy can be written as a sum
E = gL +E{E} +E(3} (4
where EX) E® E® are particle energies along x, and z directions respectively.

Using (3) and (4) in equation (2), which then separates into three equations

as
2 2. .0Q
e d*y? @ _ E My M (x) ... (5a)
2m  dx’ |
2 42 @)
_:*1 d*v = () _ @@ (y) .. ()
2m  dy?
2 2. .(3) ,
- B T (2) _ p®)y 0 .. (5¢)
Zm dz*
These equations may be written in simple form as
d! (1] .- 1 ; ";.1}
~Y 2 -5 +-‘¢ﬁ‘-11“]'ix} = (), kf = Zm_E — .. (68)
dx h*
dz (2) r . F 4 (2)
EV L) 4 kly® (y)=0 g2 = 2mED .. (6D)
dz w‘:-” ':z - " - : H-
and _'{}z?'—.] +hiy™ (2) =0, k= 2mE ... (6¢)
32

The boundary conditions are
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V' U x)=0 at ~x=0 and x = g

1 v =0 at v=0 and y= b

yoz)=0 gt Dand z=;

T!‘-"" 1‘|:'|T'1‘i‘|n']|l?.lu.i ]ﬂ:lllp wavp Hl![HTInnu ol :I|HJ'-H' equations on using |'Jfr‘lnd.?!r“.-'

andif10m S of continuity of wave I"I||"~||“”_L; at the walls of the bax. are
el ¥

[0 ;
ﬂ'r:“i.\‘} 'Iu-‘-ﬂrll ntrr;.tJ (Ta)
¥ Va a1
. [ ’
Rren_ 14 tymy et
ur".r (v) \/h-hln[ = J (Th)
Ie:
: 2 .. In
aiid W m(z} = [Zgin| 22" 2 e (7€)
2 c c

The eigen energies are given by

212 2.2 .2
PO XV bs e, =Dl
*  2m 2ma a

n°ks n?h®n2

) Y _ 2%
En_,, e T ...(8b), k_,,. =
 a9i8  g.a 9
EH} :'ﬁ kﬁ T h™ n; ...(8¢) k, = i
P2 2m 2me® ¢

~ Thus, the complete eigen functions of a quantum dot or a particle in quantum
OOX are

- _ | B o fnagmx) . [ ByRYy) . FRSws
w”::.ﬂ}'-ﬂz{x'.}"lzj_ﬂlaSln{ = ]hm[ b ]hln[ - ) .« (9)

Which involves three principal quantum numbers whose values are
"I - 1| 2r3r1-'lr r“l-' ='I"‘21‘:-!""'; !*.-ﬁ = 1'21 3"” *
Also the elgen energy corresponding to an eigen function is given by

_p M)y, @), @)
En,.n],.u,, "E‘n, +}_-," Ibu_.

X ¥
0 _x 2 H 2
Or n*—-ﬁd n X + ?_I;y,_ + H_'E {lnj
Eu Ry am | .8 1 2
- RLE LR 4 2”.1 a hq.. c‘-l

. A8 is clear from equation (10), the total energy of a quantum dot, E,, ny.ng s 18

t&e*& de;:eudjng upon three quantum numbers n,, n,, n.. The atnkmg d:ﬂamnga
Ween the case of a quantum dot and that of a quantum well or wire is that in this
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76 well or wire case only the energy

antized. This quantization featy,
antum boxes are sometimeg

is quantized wherens mlthv
sctions of confinement 18 qu
quantum dots or qu

case total energy 1s
associated with the dir :
is typical of atoms, therefore

to as artificial atoms |
referred f a quantum box 18 that when two or more of the

the same (e.g., a = b), more than one eigenfunction corresponds tq
imensions are the s "B AR , eigen v

i:ih : total energy. Such eigen values are called degenerate eig alues anq
N . \s corresponding to it 18 called degeneracy of that €nergy

A remarkable feature ©

the number of eigen function

\ ' ructure.
level Degeneracy results from the symmetry of the structur

Quantum dots have following applications :

1. Quantum dots, particularly ('dSe, have narrow emission spectra and since
different sized dots emit different colours, therefore these dots may be used for
hiological labeling. Dots are much more resistant to fading. However, labeling of
proteins or cells or other biological specimen, is done with the help of organic dyes
not with quantum dots.

Colloidal CdSe quantum dots may be used in efficient multicolour lasers,

3. Since quantum dots have tunable, size dependent absorption and emission
spectra, therefore they may be used in fabricating efficient solar cells which can
operate even under cloudy conditions and on rainy days.

F

4. Since different sized quantum dots emit different colours, therefore quantum
dots may be used in making light emitting devices (LEDs).

5. Quantum dots may be used as conducting islands in single electron
transistors (SETs) due to confinement effects. Quantum dots may be used to store
charge and hence can be used in a memory device,

3.10. PARTICLE IN AN INFINITE CIRCULAR BOX : TWO DIMENSIONS OF
CONFINEMENT

" - N
This case of confinement 18 concerned with a

quantum wire of circular cross-section, Let the
particle is confined to a circular cross.-s

i

: : _ ection of the ¥ -==1--= No confinement
wire with radius ‘ a’. The particle is free to move along I along this direction
the length of the wire, The potential in this case is _l
represented by
Fig. 3.17.
Vin={Y ¥ r<e (1)
w if r2qg

The time independent Schroedinger eéquation relevant

" to this case is
he




4.1. INTRODUCTION

Density of states (DOS) is defined as the number of different states at a given
energy level that electrons are allowed to occupy. The DOS is a measure of how close
together the energy levels are to each other. In three dimensional structures it is
equal to the number of electron states per unit volume per unit energy interval. It is
represented by g(E). If dN be the number of available electron states per unit

volume at energy E in the energy interval E to E +dFE, then density of states is
defined as :

dN (E)
dE

The calculation of some electronic processes like absorption, emission, and the
general distribution of electrons in a material requires the knowledge of the number
of available states per unit volume per unit energy range i.e., the density of states,
Bulk properties such as specific heat, paramagnetic suceptibility, and
other transport phenomena of conductive solids depend on density of
states function. The behaviour of density of states function with respect to the
energy depends upon the dimensionality of the system (material). The density of
states function provides useful information about the electronic structure of 3D
(bulk), 2D (quantum well), 1D (quantum wire) and 0D (quantum dot) materials. The
density of states can be used to determine the spacing between energy bands in

semiconductors. In this chapter we will derive expressions for density of states for
materials of different dimensions.

g(E) = - (D)

4.2. DENSITY OF STATES IN THREE DIMENSIONS (BULK)

Let us first calculate the density of states for a bulk (3D) material in which
there is no confinement at all. Thus, there are three degrees of freedom and the
electrons are free to move along all the three (x, y, z) directions. The energy E is
related to the propagation constant k (magnitude of wave vector) as
d "2 12

Zm

E

. (1)

(97)




Consider the volume in reciprocal space (i.e., k space)

4 3
Vy=—-nk
"3
where k% = ki e+ b
&n 4 2n ) EH_
and Ry = L.’ Ry T

Here L,, L,, L. are the length of the material along x, ¥, z directions. The ii’if?ti":r
of 21 occurs due to the application of periodic boundary conditions on the material. A
set of (k,, k,, k.) values represents a mode. Thus
Volume occupied by each mode =k, . &y . k;
b (2n)°
L, Ly L,

Therefore the number of modes in the spherical volume V, are given by

in kE?

Volume of sphere _ Mg
Volume of each mode k. ky &, (21)%/L, E.L.

For electrons, there are two states (spin up and spin down) with same energy.

then the number of electron states (or modes) in the volume V. are
4

_H.kﬂ
=9 x 33
(2n)°/L. L, L,
;1’-3
32 Laly L, - (2)
The number of electron states per unit volume ofihe materiat
!-I_H
T L. L.L.
N = _l”tﬂlmlmhur of states g2 iy L,
Volume of the specimen L, -Ii:f-.:: ks
o
(== 2 e (D)
dn =

Density of states

dE dE Fig. 4.1. Spherical k-space
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Density of States
1 3k“dk _k°( dk) D
ame  dE e\ dl )
From equation (1), |
g 2mk (2mk
R or & | -
f.l'l' ll.' h™
12 1 =109 5y
dh = (S22 plE g
IllI .F,.""' 2
Putting these values 1n equation (4), we get
. 1 2mE (2m1 .1
E‘-.‘L-} — 2 x P= x |I "‘;' - .E-
n“ R q\' k-
o D12
| . .1/2
g(E) = % [2m ] gin &
2n% \ A4

This 1s the “density of states” in three dimensions. It is

g(E)o E'*

Thus density of states of a bulk three dimensional
material 1s a parabolic function of its energy. Fig. 4.2, shows a
plot of g(E) versus E for a bulk three dimensional material.
Clearly, density of states in three dimensional system 0 E—
increases with increase in energy of the system. Fig. 4.2.

4.3 DENSITY OF STATES IN TWO DIMENSIONS (QUANTUM WELL)

In a two-dimensional material such as a
confined along one direction (say, 2)
directions (x, ), Thus

quantum well, electron motion is
and they are free to move along rest of the two
:lectron energy is quantized in one dimension, Total energy of

Lhis material is the sum of the energy along the quantized direetion and the energy
along the other two (ie,, free) directions. It can be expressed as
0o
E Wk ’ h= k*
x | —
2m 2m 0

il‘._'l- iy {I]
where k* = kE 4 2 and kb, =27
¥ B

o -

. Here n =123, is an integer,

Let us now considas
consider the circular area of b

A}.- =K !I.':E

space




100 1o is free to move, therefore due
i g ' '- I'!l el r_“l rl.-] l-_' F k
Hence along x and y directions

periodic boundary conditions

i anm

% T,

Hﬂ

i Jne
(2n)° . (2)

Area of each mode - k. ky = L5

; ; AT ' iven by
Total number of modes the area Ajp 18 £ 2
Total area nr

~ Area of each mode (2n)*/L, L,

k* o
=—UL, L,

dmn

If the particle be an electron, then there can be two electrons corresponding to
same energy, one with spin up and the other with

=
il
i

spin down. Therefore total number of energy states |
in the area tk° are given by
2 2
MWL N Ok, 8 JRSCRT
4m 2n - .
= : z
Number of states per unit area
N Total number of states
Area
2
& L.,
. FREe Fig. 4.3. Circular k-space
L,L,
.-‘1'2
— En - {.5}

Density of states

g(B) = 9N _d(k/2r) _k( dk
di. dE  n\dE

NUW ;I'r huffz

B - (along f T—
2m (along free directions)

k:\[:}ﬁ El2
52
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Density of States
[ 1y ;
dk = 2m 1 p-112 gg
‘Jﬁ"“‘ 2
Qubstituting the values of & and dk in the above expression, we get
el 1/2 1/2
1(2mE 2m | L -1/2
g(E)== === “["z -
nl p= W/ Z
" e ... (B)
Fil) ==
or Hﬁz

This is the energy density of the subham:_l for a given k, (or E,). For each
<uccessive k. there will be an additional m/n #* term and hence another subband.

The density of states is therefore expressed as

g(B)=-"_30(E-E,) (D
'.n:}‘z2 n

where © is the Heaviside function or unit step function and is given by

0 for E<E
®(E-E,)= . (8)
1 for E>E,

The plot of g(E) versus E for a Parabolic
two-dimensional material like quantum well is l 52D
shown in fig. 4.4. The resulting density of states = ah "f"‘""
for a gquantum well i1s a staircase. 2 E

Clearly in each subband, the density of ¥ X /—?_S“h*bﬁnd
states 1s a constant Le., independent of energy. m'rfhg E.,_, for i
The difference in the density of states of two g E; Eq Es E—
consecutive sub-bands is m/mh>. Fig. 4.4.

4.4. DENSITY OF STATES IN ONE DIMENSION (QUANTUM WIRE)

In a one dimensional material such as a quantum wire, particle motion is
confined along two directions (say y, z) and free along one direction (say x). Thus

there is only one degree of freedom. Particle energy is quantized for motion along y
a?d z directions, Total energy of the system can be written as the sum of the energy
along the quantized directions (y, z) and the energy along the free direction (x), i.e.,

2 2 [ i i ¥
E:E_.k_y+ndkz£ +ﬁ£k£
2m 2m 2m

= E; +E. +E:_ ses {1}

b1
where k=Fk, = T For the confined directions, we have
x
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lll.
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W com idder A |r-r|t'|h 2hin R P The “””Ih{'r"-l.
w hiog e integed
It i 11 14 ||'
) ||I
f /
| ¥ i I‘ -
. e an electron then there can be two r-|4-rfr"|ra.— one Witn spir )
wath & 1 oW .11;1--'|m|u|rrlj_' iy pach FRergy Ii'.r-,r---!r..r'- tne number f
J 2k
i) II. = f'“l
T T
Number of states per unit length
2k
L 2k
N=2=L = — 2)
L, m
- IL
Now ) Z2mE
I l.).
V #*
Number of states per unit length
o
2 |21
‘-H\lr = |Ig HE I3:|
x| 52 '
Density of states is given by
_ l =12
[ ¥, [ [ = o
2(E) i 2 I|.dm dalVE)Y 2 [2m ~:-£' ak
: Y .I — _— — e | Sk w = —
dlf n\ 42 ) | 54 r
T\ g dk | p2 ak
: . 1 (Zm 2 1 |2
or ,“r:r | o 112 | LM
£ / f £ : {-I}'I

n\ p* | \.,' W2 R

| This 18 the energy density for a given n, | value or
Iff‘.'.'” : EI.- r-r;n';hm.-mruu This clearly shows that the
density of states of a one dimensional system
(quantum wire) decreases with increase in eruerg_v,r
for every (n, ) combination.

By taking into account all n, | combinations. the
complete expression for density of states is expressed as
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2m
e h n, .F JE

where @ (E-E, ;) is the Heaviside or unit step function. The plot of g(E) versus E
for a quantum wire is shown in Fig. 4.5.

g(E)=

E"r' {E_En,i} ... (D)

4.5. DENSITY OF STATES IN ZERO DIMENSIONAL SYSTEM (QUANTUM DOT)

In the extreme case of confinement along all the three directions, particle 1s not
free to move at all. Its motion is confined along all the three directions x, y, 2. The
resultant material or nanostructure is called a quantum dot or nanoparticle. The
energy of the particle is quantized along all the three directions x, y, 2. Therefore
total energy of the system is quantized and is given by

2, 2 212 9.9
=.iFI kx +|F.' k_}- +E kz =E!+En +Ep = {1}
2m 2m 2m
where I, n, p=1,2,3,... are integers.

5’(1}:. +m K =g

\
Also f € g
b=
F T
e Badi =)
z E* )
In this case there is no k-space to be filled Fig. 4.6. DOS for Ideal quantum dots

with electrons and all available states exist
only at discrete energies. Hence the density of states for a zero dimensional (0D)
system i.e., a quantum dot is expressed by a delta function as

g(E)=8(E-Ey ) - @
Fig. 4.6. shows the plot of g[E] versus E for a zero dimensi mhriaL

......

(line) function as ahuwn in the Fig, 4.7.

T
.
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1D AND oD
_ 4.6. COMPARISON OF DOS FOR 3D, 2D,

i Mergy
: . (DOS) with ent
The variation of density of states (DOS)

m helow g
: lot 18 shown nsity of states
are and quantum ¢ Densit.
gquantum wir ¢ Structure
0
Degree s
Freedom }

Rulk ‘

-}
e

L"__'].e [y (E) a F“h
=11} h
4 » E
|_ ; Well
i &
Eﬂt 172
1. o '
ire
*E
[
=
:
Bb a b (E)
+ E

Fig. 4.8. Comparison of DOS

_ Y of states of electrons of energy 0.1 eV in three
dimensiong, n terms of eV and em?3,

8ol. The electronic density of stateg In three dimensions is given by
4/2 5
: 1 (2 9
B(E): . [ ,-”J fli (1)
2=\ p? ]
f

nven that : 4]

14 m=my=91x10 kg and g = 0.1 eV
h= 1054 x 107 joule.gec
_ 1.054 x 134

eV, gep
1.6x 10) 19 i

= 0.66875 x 10156 eV see.
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Besides the above discussed factors. there are certain other parameters |
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actors) that greatly influence the nature of nanoparticles being synthesized
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5.3. TOP-DOWN APPROACHES

lop-down approaches of synthesizing nanomaterials use macroscopic initial

nch can be externally controlled in the processing of nanostructures
l'vpical examples are etching through the mask, ball milling, cutting, grinding and

ipplication of severe plastic deformation, photolithography, e-beam lithography etc.

Top-down methods begin with a pattern generated on a larger scale, which is
reduced to nanoscale after a sequence of operations is performed over them. The
major drawback of these methods is that they require large installations and huge
capital 1s required for building their set-up. Therefore these methods are quite
expensive. Moreover the growth process is slow and hence these methods are

f scale production. However top-down methods are very suitable

not suitable for large
for laboratory experimentation.
)as ‘indi ) srial. Thus Se processes
Top-down approaches are based on grinding of material. 'hus these t})) s
; 1c8 1c 3 she ts a
re subtractive 1n nature The parts of mechanical devices used to shape objec st
are s , ‘ : }  Tha -dow
methods are not suitable for soft samples. The top-

1t p yy plece 1N ¢ r of
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, . chrique Uséd both for H}rnthm_;lﬁ and crharm:ter.lzatmn of
Laanil;;izizaﬂi ‘uttf;hilwx:rll approach. f’htnFmv force mlr;rnl-‘;_:-"_'[ia'f‘l }if’fhﬂ:jlh“llt':dﬂ:ﬂ? be
used as a nanoscale “write head” to deposit a resist, w llf.V:H -h'-lﬂ hU 0‘-’*’; -"Jrhfllll
etching process to remove material in a top-down mt‘lllml.. I_Lr*.'nr' g j:l“ﬂlft}' thin
films can be deposited with nanometer control perpenc "-"~1|f”t Lo the plane of a
substratum and this method is called physical vapour deposition _{FVD). In this
method the material to be deposited is evaporated from the reservoir or sputtered

from the target.

Chemical vapour deposition (CVD) 1s another technique for the synthesis of
nanostructures using top-down approach. In this method, the precursor (which is a
compound that participates in a chemical reaction that produces another compound)
of the thin layer is a reactive gas or mixture of gases and the substratum is typically
heated to accelerate chemical reaction to form a solid product deposited as a film.
The decomposition can be enhanced with a plasma. In MOCVD, the growth of
erystals is by chemical reactions instead of physical deposition (as in MBE).

Metal-Organic Chemical Vapour Deposition (MOCVD) also known as
Vapour Phase Epitaxy (MOVPE) takes place not in a vacuum, but from the gas
phase at moderate pressures (2 to 100 kPa). This is a suitable technique for
growing compound semiconductors from the surface reaction of organic
compounds and metal hydrides containing the required chemical elements.

Ion implantation is used to modify existing surfaces of materials. In this
method, electrostatically charged high energy (10-100 Kev) ions are directed towards
the surface, where they arrive with kinetic energies several orders of magnitude
higher than the binding energy of the host material, and become implanted in a
surface layer that may be tens of nanometers thick.

In the top-down approach nano-objects are obtained from larger entities without
atomic level control. Many technologies that emerged out of conventional solid state
silicon methods for fabricating microprocessors are now capable of creating features
smaller than 100 nm, which lie in the domain of nano-technology. Giant magneto
resistance (GMR) based hard drives which have been already commercialized use
top-down approach. Top-down methods can also be used to create
nano-electromechanical systems (NEMS). Top-down methods use lithography in
which a bulk material is reduced in size to nanoscale pattern. In top-down approach
cllltting, milling and shaping of materials into the desired .a’hapé ané ordar m
place. ' LR

Electron beam lithography and X-ray lithography
an alternative to photolithography technique used in top-c

beam technique is very expensive and also
th'a starting material is generally solid. In these mes
Increase in surface defects since the materi;

ha




5.4. BOTTOM-UP APPROACHES

hesis of nanomaterials include the
of synt l;} ;atr;rmir level with further self assembly
of nanostructures. Duripg f:‘:elf E;bsembly the
combine basic units into larger stable
formation during epitaxial g"."?"th
physical vapour deposition,

Bottom-up approaches
miniaturization of materials comp
process leading to the formation |
physical forces operating al nanoscale S
str-"l.lcturcs. Typical examples .'1.1L~{~ ”uﬂ"“'”:.l] R
and formation of nanoparticles from colloidal dispersic

chemical vapour deposition etc.

onents

. i wules and build nang.
In the bottom-up methods we start :mlh atoms nr}Tr,:i;:nlgm?ﬂmiup et
<tructures bv the direct manipulation of atoms or mf".iHL! .-I.'::*r manipulation for
:"-nmh'r'- nmni-h_\- atom. molecule-by-molecule or f‘fH-‘:‘-"F'Fr' yCatda ’at#ria] o cithiar i
svnthesis of nanostructures. In these mel,hnr.lsl the St:dr.t]mf mhpjmjcal %;’I’ltthis
[iqmc’t state or gaseous state, These IwrhnltiUI‘-‘F' ciuste f‘f : i 15 nne]: l
self-assembly and positional assembly. Dual lmlﬂ‘ftﬁﬂm'n HILOEECEQIICEED o
suitable for characterization of self assembled thin films.

Bottom-up approach is based on the principle of molecular Fecognitinn
(i.e., self assembly). Self assembly means growing more and more things of one's
kind from themselves. The idea of self assembly (shake and bake) is to gather
precursors in random positions and orientations and supply energy (shaking) to
allow them to sample configuration space. The hugeness of this space suggests that
a convergent pathway is inherent in the process in order to allow it to be completed
in & reasonable time. Once the precursors are in position, “baking” may be required
to strengthen the bonds connecting them and fix the final object permanently.

Many biological systems exhibit remarkable capabilities of assembling
themselves starting from a randomly arranged mixture of components. The
examples are bacteriophage virus, and proteins and ribonucleie acids (RNA) which
can Be spontaneously transformed from a random coil of the linear polymer to a

compact, ordered 3D structure. In this approach the starting precursors of the final
structures have to be very carefully designed.

The highly Hpe_r:ialjzed chemistry of living systems, the fragility of manv of its
products and its inherent variability at many levels have made self aésemhl}.
unsuitable for mimicking directly and Incorporating into our present industrial system

Bottom-up approaches are capable of producing devices in parallel and
much clheaper than top-down methods but becomes difficult as the size and
complexity of the desired assembly increases.
cnmplex.and thermodynamically unlikely ar
base pairing and enzyme substrate interactions are
assembly based on molecular recognition in biology, A
“Classical Chemical” synthesis also aim at A
shape. AFM tips can be used as a nanoscale “write head” to g
a surface in a desired pattern in a proc .

Most useful structures require
rangements of atoms. Watson-Crick
notable examples of self
: proaches from the field of
designing molecules with well defined
posit a chemical upon
ess called dip pen nano-lithography.
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beams are directed onto the surface at which device is to be grown. .

Nature uses self-assembly 1n ultea-fine  ways. rI"rlu- natural world 15 self
assembled. In nature, spontaneous organization of molecules into stable,
structurally well defined aggregates of nanometer dimensions takes place, Molecules
can be transported to surlaces through liquids to form self-assembled monolavers
(i.e. single atom thick layers). Atomic layer deposition (ALD) 1s one of the bottom-up
nu-*tlm:i; which is very useful in depositing thin atomic layers on a substrate.
Bottom-up methods provide improved nanostructures with less or defect [ree,
homogeneous and long and short range orders.

~"5.5. BALL MILLING

A ball mill is a device used to grind and blend materials for use in mineral
dressing processes, paints, pyrotechnics, ceramics and selective laser sintering. It is a
physical method of synthesis of nanoparticles and is an example of top down
approach of producing nanomaterials.

The ball mill consists of a hollow cylindrical shell which rotates about its axis.
The axis of the shell may be either horizontal or inclined at a small angle to the
horizontal. It is partially filled with the balls which may be made of chrome steel,
stainless steel. ceramic or rubber. These balls form the grinding media of the ball
mill. The inner surface of the cylindrical shell is generally lined (i.e, coated) with an
abrasion resistant material e.g., rubber or mangenese steel. Rubber 1s preferred for
this purpose due to less wear in mills lined with rubber. The length and diameter of

| the ball mill are nearly equal.

Prineciple : A ball mill works on the principle of impact and attrition (i.e.
r friction). The gize reduction is
carried out by impact as the
balls drop from near the top of grinding balls R
the shell. In a econtinuously
operated ball mill, the material
| to be ground is fed from the left
through a 60° cone and the
resulting material (product) is
discharged through a 30° cone
to the right both not shown in
the figure 5.2. With the rotation
of the shell, the balls are lifted
up on the rising side of the shell B“F“m,dpﬂhl_,
and then they drop down on to = )




